CSC 414 Final

Chapter 10

Memory Management
- The memory management portion of the Operating System is responsible for the efficient usage of main memory, especially in a multiprogramming environment where processes contend for memory.

- It must also offer protection of one process address space from another (including protection of system address space from user processes).

[image: image1]- The memory subsystem should also provide programmers with a convenient logical or virtual address space, in which the low-level details of memory management are hidden.

Sharing of Memory

Issues

· Allocation schemes

· Protection from each other

· Protecting OS code

· Translating logical addresses to physical

· Swapping programs

· What if physical memory is small: Virtual memory

Memory Management Strategies

· Fetch Strategy:
Determine when to load and how much to load at a time. E.g., demand fetching, anticipated fetching (pre-fetching).

· Placement (or allocation) Strategy:
Determine where information is to be placed.
E.g., Best-Fit, First-Fit, Buddy-System.

· Replacement Strategy:
Determine which memory area is to be removed under contention conditions.
E.g., LRU, FIFO.

Memory Management Evolution

- Variations

· Fixed Partitions

· Variable Partitions

· Segmentation

· Paging

- Criteria

· How efficiently can it be implemented?

· How effectively can the physical memory be utilized?

Fixed Partitions

· Divide all physical memory into a fixed set of contiguous partitions. E.g., early IBM 360 models.

 +---------+

 | 12K | Queue for waiting processes

 +---------+

 | 2K |

 +---------+

 | 6K |

 +---------+

 | OS: 2K |

 +---------+

· Place only one process at a time in any partition.

· Bind physical to virtual address during loading, not during execution.

· Partition boundaries limit the available memory for each process.

· A process is either entirely in main memory or entirely on backing store (i.e., swapped in or swapped out).

· A process may only be swapped into the same partition from which it was swapped out (why?)

· It can only simulate smaller, not larger, virtual space than physical space.

· No sharing between processes.

9 Should there be a single queue per partition or one global queue?

10 Memory space wasted:

· Internal fragmentation: memory which is internal to a partition, but not used.

· External fragmentation: a partition is unused and available, but too small for any waiting job.

Managing Free Space: Linked Lists
[image: image7.emf]Free: 30K

O S: 20K

Free: 20K

B: 50K

Free: 60K

D: 20K

- Each record has

· Process ID/ Free (H: hole)

· Start location

· Size

· Pointer to Next record
- Current state (H,2,3),(B,5,5),(H,10,2),(D,12,2),(H,14,6)
- How should we update the list when B leaves?

Managing Free Space: Linked Lists

- Current state (H,2,3),(B,5,5),(H,10,2),(D,12,2),(H,14,6)

- PCB for a process can have a pointer into the corresponding record

- When a process terminates, neighboring blocks need to be examined

· Doubly-linked lists

Allocation Strategy
- Suppose a new process requests 15K, which hole should it use?

- First-fit: 30K hole

- Best-fit: 20K hole

- Worst-fit: 60K hole
- Let {Hi | i = 1,…,n} be unused blocks and k be the size of a requested block.

- First-Fit
· Select the first Hi such that size (Hi) ³ k.

· That is, select the first block that is big enough

- Best-Fit
· Select Hi such that size (Hi) ³ k and, if size (Hj) ³ k then size (Hj) ³ size (Hi) for i ¹ j.

· That is, select the smallest block that is big enough.

- Worst-Fit
· Select Hi such that size (Hi) ³ k, and if size(Hj) ³ k then size(Hj) ³ size(Hi) for i ¹ j. (idea: to produce the largest left-over block.)

- Buddy System
Best-fit vs. First-fit

- Both could leave many small and useless holes.

- To shorten search time for First-Fit, start the next search at the next hole following the previously selected hole.

- Best-Fit performs better: Assume holes of 20K and 15K, requests for 12K followed by 16K can be satisfied only by best-fit

- First-Fit performs better: Assume holes of 20K and 15K, requests for 12K, followed by 14K, and 7K, can be satisfied only by first-fit

- In practice, F-F is usually better than B-F, and F-F and B-F are better than W-F.

-Allocation algorithm that forms basis of Linux memory management

- Suppose we have 128 units (128 pages or 128K)

- Each request is rounded up to powers of 2

- Initially a single hole of size 128

- Suppose, A needs 6 units, request rounded up to 8

- Smallest hole available: 128. Successively halved till hole of size 8 is created

- At this point, holes of sizes 8, 16, 32, 64

- Next request by B for 5 units: hole of size 8 allocated

-Next request by C for 24 units: hole of size 32 allocated

[image: image13.png]Page

Page
Global middle Page 1 Word selected
directory directory table
—
—
—]
N

Directory Middle Page Offset Virtual address

Chapter 11
Lecture Note: Virtual Memory
- Recall: memory allocation with variable partitions requires mapping logical addresses to physical addresses
- Virtual memory achieves a complete separation of logical and physical address-spaces

Today, typically a virtual address is 32 bits, this allows a process to have 4GB of virtual memory

· Physical memory is much smaller than this, and varies from machine to machine

· Virtual address spaces of different processes are distinct

- Structuring of virtual memory

· Paging: Divide the address space into fixed-size pages

· Segmentation: Divide the address space into variable-size segments (corresponding to logical units)

Paging (1)

[image: image2]
The position and function of the MMU

Virtual Memory (Paging)
- Physical memory is divided into chunks called page-frames (on Pentium, each page-frame is 4KB)

- Virtual memory is divided into chunks called pages; size of a page is equal to size of a page frame

· So typically, 220 pages (a little over a million) in virtual memory

- OS keeps track of mapping of pages to page-frames

- Some calculations:

· 10-bit address : 1KB of memory; 1024 addresses

· 20-bit address : 1MB of memory; about a million addresses

· 30-bit address : 1 GB of memory; about a billion addresses

[image: image3]
Virtual Memory in Unix

[image: image4]
Paging

- A virtual address is considered as a pair (p,o)

· Low-order bits give an offset o within the page
· High-order bits specify the page p

- E.g. If each page is 1KB and virtual address is 16 bits, then low-order 10 bits give the offset and high-order 6 bits give the page number

- The job of the Memory Management Unit (MMU) is to translate the page number p to a frame number f

· The physical address is then (f,o), and this is what goes on the memory bus

- For every process, there is a page-table (basically, an array), and page-number p is used as an index into this array for the translation

Page Table Entry

- Validity bit: Set to 0 if the corresponding page is not in memory

- Frame number

· Number of bits required depends on size of physical memory

- Protection bits:

· Read, write, execute accesses

- Referenced bit is set to 1 by hardware when the page is accessed: used by page replacement policy

- Modified bit (dirty bit) set to 1 by hardware on write-access: used to avoid writing when swapped out

Page Tables (1)

[image: image8.emf]Prog ram 2

O S

Program 3

Free space

Program 1

Internal operation of MMU with 16 4 KB pages

Design Issues

- What is the “optimal” size of a page frame ?

· Typically 1KB – 4KB, but more on this later

- How to save space required to store the page table

· With 20-bit page address, there are over a million pages, so the page-table is an array with over million entries
· Solns: Two-level page tables, TLBs (Translation Lookaside Beffers), Inverted page tables

- What if the desired page is not currently in memory?

· This is called a page fault, and it traps to kernel

· Page daemon runs periodically to ensure that there is enough free memory so that a page can be loaded from disk upon a page fault

- Page replacement policy: how to free memory?

Multi-Level Paging

- Keeping a page-table with 220 entries in memory is not viable

- Solution: Make the page table hierarchical

· Pentium supports two-level paging

- Suppose first 10-bits index into a top-level page-entry table T1 (1024 or 1K entries)

- Each entry in T1 points to another, second-level, page table with 1K entries (4 MB of memory since each page is 4KB)

- Next 10-bits of physical address index into the second-level page-table selected by the first 10-bits

- Total of 1K potential second-level tables, but many are likely to be unused

- If a process uses 16 MB virtual memory then it will have only 4 entries in top-level table (rest will be marked unused) and only 4 second-level tables
Paging in Linux

[image: image9.jpg]The CPU sends virtual
CPU addresses to the MMU

package

CPU
Memory Disk
management controller
unit

Bus

The MMU sends physical
addresses to the memory

Linux uses three-level page tables

Translation Lookaside Buffer (TLB)
- Page-tables are in main memory

- Access to main memory is slow compared to clock cycle on CPU (10ns vs 1 ns)

- An instruction such as MOVE REG, ADDR has to decode ADDR and thus go through page tables

- This is way too slow !!
- Standard practice: Use TLB stored on CPU to map pages to page-frames
- TLB stores small number (say, 64) of page-table entries to avoid the usual page-table lookup
- TLB is associative memory and contains, basically, pairs of the form (page-no, page-frame)
- Special hardware compares incoming page-no in parallel with all entries in TLB to retrieve page-frame
- If no match found in TLB, standard look-up invoked
More on TLB

[image: image5]
- Key design issue: how to improve hit rate for TLB?

· Which pages should be in TLB: most recently accessed

- Who should update TLB?

· Modern architectures provide sophisticated hardware support to do this

· Alternative: TLB miss generates a fault and invokes OS, which then decides how to use the TLB entries effectively.

Inverted Page Tables

- When virtual memory is much larger than physical memory, overhead of storing page-table is high

- For example, in 64-bit machine with 4KB per page and 256 MB memory, there are 64K page-frames but 252 pages !

- Solution: Inverted page tables that store entries of the form (page-frame, process-id, page-no)

- At most 64K entries required!
- Given a page p of process x, how to find the corresponding page frame?
- Linear search is too slow, so use hashing
- Note: issues like hash-collisions must be handled
- Used in some IBM and HP workstations; will be used more with 64-bit machines
Hashed Page Tables

[image: image6]
Steps in Paging
- Today’s typical systems use TLBs and multi-level paging

- Paging requires special hardware support

- Overview of steps

· Input to MMU: virtual address = (page p, offset o)

· Check if there is a frame f with (p,f) in TLB
· If so, physical address is (f,o)

· If not, lookup page-table in main memory (a couple of accesses due to multi-level paging)

· If page is present, compute physical address

· If not, trap to kernel to process page-fault
· Update TLB/page-table entries (e.g. Modified bit)
A exits

The relation between virtual

Addresses and physical memory

addresses given by page table.

4H

4D

8B

8H

32C

8H

B exits

64H

4H

4D

16H

8H

64H

32C

D requests 3

4D

Protection bits

Modified bit

Frame number

Page number

4H

8H

8B

PID

PID

Hash table

Number of entries: Number of page frames

Frame #

Page #

Hash

Offset

Page number

�

�

8A

32C

64H

8B

8A

16H

32C

64H

Page 8 of 11

[image: image10.jpg]Virtual
address
space

60K-64K
56K-60K

} Virtual page

52K-56K

48K-52K

44K-48K

40K-44K)

36K-40K i’;ﬁf@'

32K-36K address

28K-32K 28K-32K

24K-28K 24K-28K

20K-24K 20K-24K

16K-20K 16K-20K

12K-16K 12K-16K

8K-12K 8K-12K

4K-8K 4K-8K
0K-4K 0K-4K

Page frame

[image: image11.png]Stack pointer—-[________|

rfoccoo A

00
V0
A,
//////////
V0

W
N\

V0
V0
V0

N
2N
2\
N \

roctcos D

Stack pointer

[image: image12.jpg]+ Outgping
[[o[o]o[o[o[o[olo[o[o[]o]q] physical
S —
(24580)
12-bit offset
copied directly
from input
to output
Present/
absent bit
Virtual page = 2 is used
as an index into the
page table Incoming

virtual

[oo[1]o[o]o[oo]o]o[oo]o]*]o]o] b

